A RE-EXAMINATION OF MESEMBRIOMYS HIRSUTUS GOULD 1842 (MURIDAE)

by H, H. Finlayson

[Read 13 Oct. 1960]

Abstract

SUMMARY The charactors of Mfsembroturs hirsuthe Gould are re-esamined with fresh material. Detailed evidence of its arhoreal specializatism is presented, The validity of the insular form M. Fitsuths molvillensis Ilayman is confirmed. Some aspects of the living animal, of skull and dentition, manus and pes, are illustrated.

I owe to the kindness of my friend and former student, Wilfred Bateman, Esq., now of the Commonwealth Administration in Port Darwin, a magnificent living specimen of this great tree rat of Northern Australia, which though formerly much eollected and written upon tavonomically, is still very imperfectly known.

The specimen was caught by blacks near Garden Point, Melville Island, where it is still plentiful and it occurs also on the adjoining Bathurst Island across the mile-wide Apsley Strait. Formerly it was a common animal in suitably forested country over much of the Northern Territory as far south as Daly Wutcrs, but in recent years its numbers have declined and in many of the localities of the Daly Biver sector, where Knut Dahl found it plentiful in 1894 95 , it seems now to be a rarity. It occurs also on Cape York Peninsula, Queensland. Daht recorded the aboriginal names Numjala, Dombot and Kalambo for the species and the last of these is still in use by mixed Tehingilli and Mudburra blacks at Daly Waters, though it is 20 years since the animal was seen by them there. Mr. Bateman also supplies the names Intamunga and Puturamucka as being used on Melvillo Island. About 60 speciniens have been listed in overseas collections, but it is much less well represented in Australian museums.

The animal was Hown to me from Port Darwin and the air lift of 2,000 miles, spawing a considerable climatic gap, terninated in unusually cold weather in an Adelaide spring (August) which continued for much of the period of eaptivity. Although it was provided with axtificial warmth and much thought taken for its comfort in roomy quarters, it remained extremely secretive and could only be momentarily glimpsed by torch light. When denied its

[^0]nesting hox occasiomally for observation it repulsed all advances with implacatile forocity and was a diflicult subject for plutography, so that the attempt to sain some insight into its habits and peculiarities was largely uugatory. Dahi (1897) writes of its irritability and savage temper in the wild and the severity of its bitiog, and the blacks I interrogated at Daly Waters in 1953, who formerly took it by hand from hollow trees, also spoke feelingly of what they called its "checkiness. In its frequent rages, the captive displayed considerable vecal powers of a kind quite different from the squealing and piping of more numal forms, such as Rattus, Pseulomys, Cyomys and Mus, raising its voice progressively into at surt of whirring machine-like crescendo, not anlike some of the Phalangeriake, such as Pefaturns breviceps. There was no difficulty in keeping it nourished as it ate very freely of sugared bisents of scyeral sorts (a taste evidently inculcated by the air hostess, as his box was strewn with them on arrival), of bananas and other soft fruits and of mixed grain, but showed no interest in green vegetation nor Hesh foocls. Dahl records that the chief food of the specios in the Daly River districts is the fruit of the local Punstanios odoretissimus, but the stomach of one of those examined below, which was taken on the Stewart River in Vorth Queensland, was crammed with a gritty mass in which the shell of a fresh water mussel appeared to be the chief constifuent. When examined after three months' detention, the Garden Point aninal was found to be in excellent condition, weighing 870 g. and showing a smooth, wellgroomed coat; no extemal parasites were noted. Ellerman (1941) records a life span of more than four years in captivity in London.

In checking over the characters of the species, I have used for comparison tight wher specimens in the South Austrafian Museum representing all three of the areas from which the deseribed geugraphic forms have come. Six of these were collected for the Museum in 1913-14 by Mr. W. P. Dudd, whese itherary in the field was planned during the directorate of Sir Edward Stirling and two are donations from Mr. P. Foelsche, formerly stationed at Port Darwin. The account which follows is based primmily on my Iecshly chloroformed captive, which is a young adult male, and four additional examples from Melville Island, and thus represents the form M. hirsutus melvillensis IIayman 1936; where subspecific ronifurmity is departed from, it is noted in the lext, and an appraisal of the validity of the described forms, as far as the material permits, is appended later.

EXTERNAL GHARACTERS

1'arm stout, with sturdy arms and shoulders and thick neek; the hind quarters are considerably larger than the fore, hit not greatly exaggerated.

The head (Plate 2 and Plate 3, Fig, A) large anci deep, with a strongly protuberant thimarium and labia well developed but not pouted as in Leporillis. At a point one-third of the distance from the shinarimm to anterior canthus of the eve, there is a dent in the profile, the remaining curvature to the orown being moderately conves. The eye is large, black and very brilliant and is surrounded by an area of almost nude epidermis, which in tum is conspicuously ringed by a narrow band of jet black hair; the upper eye lashes are fairly well developect reaching 4 mm . in length. The ear is large, thick in substance, rather matrow and with its maximum breadth below tho midpoint; it is carried swell tway from the head and conspicuously pricked. The epidermis of its inner surface is dusky brown with bluish pink areas showing through on the conols and the margins almost black; procicsses of the conch ure well marked and the
tragal notch deep and undivided. The cephalic erbrissae are strongly developed and entirely blaek except for the interramals which are pater at the tip. The mysticial set acach 100 mm , us a maximm, the supraorhitals 38 mm . and the gonals, two of which spring from a very strongly developed papilla, 35 mm . The postoral gromp was not taced in adults of the Melville Island lot, but in a silxidult all-black bristles: on this site reached 14 mm . and in an adult lemale of $M /$. rattoides, 20 mm ; the submentals reach 12 mm , and the interramsls 23 mm.

The general physiognomy is distinctive and in some features sciureid rather than murine.

The mants is variably developed, but is usually lange in respect to the goneral size of the uninal, and sometimes much stouter than in the example figured ($\mathrm{Pl}, 3, \mathrm{~F} / \mathrm{g} . \mathrm{C}$). The kngth from base of melacarpal pads to apieal parl excluding daw, reaches 30 mm . in adults, the breadtl from base of digit 5, 14 mime, yielding a breadth/length ratio of 0.47 ; the 3 rd digit, 13 mm ., and its mat 8 uma; iu two examples of the typical race in which the manos is very benty the loreadth rises to 16 min. and the walue of B / L to 0.53 as maxima. The digital formula is the normal $3>4>2>5>1$, but the pollex is unusually large und apparently functional tind provided with a broad, blunt, projecting sheath-like mail; tho claws of the other digits varying much in length from individual to individuul, hat always stout and strongly surved and umsually deep dotso-ventrally at the base: pale yellowish in colour, but slightly darkened akong the dorsal curve.

The generad palmar surface is lightly ercased, not nuticeably punctate and in life its colour is a pale slightly bluish pink with the pads and digital ridges strongly contasted in blackish brown. The patmar aspect of the digits is yuite loairless, and the ridges prominent, evtire and unusually numerous; 8 or 9 am D3 and D4, but reaching 11 in one subadult of the typical racc-the highest connt noted on an Australian murid. The metacarpal pads are broad and obtusely oval and greatly oxcced the interdigitals in area; the outer (hypothenatr) much larger than the imer, which has its long axis inclined laterad towards the pollex and its distal margins well raised above the base. The lateral interdigitals are subtriangular or inverted heart-shaped, with a strongly developed satellite pad at the base of the outer, and the median pad a broad inverted pyriform; the size sequence for area is outer meticarpal $>$ joner metacarpal $>3 \mathrm{rd}$ interdigital $>1 \mathrm{st}>2$ nd. The palmar pads are strongly striated, the apical pads of the digits, Seebly so,

The pes (Plate 3, Fig; B) has ntmerous well-marked peculiarities. Its dimensions vary, hut yield several maxima which exceed all other Australlian murids, except possibly tho specles of Uromys, in plantar aspect it fapers strongly from a broad interdigital area to a nude strongly eonstricted heel; its relative size is large, attaining in the largest examples 25 pec , of the luead and body length and a maximum breadth/length ratio of $0 \cdot 30$; the 3rd digit reaches 16 mm . and its nail 9.5 mm . (11 mm . in one example of M.h. tattoifies). The digital formula is $4>3>2>5>1$, but the disproportion between the: lateral and medjan digits is much less than that which prevails in the majority of Australian spocies, both the ballux and D. 5 being longer in their phalanges and at the same time their bases are brought into a more anterior position on the pes, by longer metatarsals supporting them. Thus the apical pad of the hallux, which in nast Australian species lies far below the level of the base of D.2, here renches to its posterior third, and similarly that of D.5 to the anterior third
of D.A. The digital ridges are strongly developed and clear cut and are entire exeept posterionly, where some obscure bifureation may be seen; all show more or less distinctly the novel feature of antero-posterior striation, hut there is no scalation; they are numerous, ranging from 9-11 on the median digits in the Melville Island material and to 14 in a subadult of the typical race, which (like that of the manus) is the highest count 1 have obtaincd in an Australian rat. The claws are still stronger than in the manus and almost equally curved, and slightly darker in colour.

The plantar surface generally is soft and plump, markedly punctate, but with the ereasing reduced to a minimum; the colour in life as in the manus, but with the differential darkening of the pads and digital ridges carried still further The disposition of the interdigital pads is unusually symmetrical owing to the above peculigrity of the lateral digits; they are of but moderate size, but very sharply defined and well raised above cingulun-Jike structures which also have margins almost as well defined as the pads which surmount them, in eontrast to the rather amorphous folds of integument usually found in that site. The lateral pair are somewhat kidney shaped; the inner (1.D.1) with twa rather ill-defined accessory pads at its postero-extemal comer and the outer (I.D.1) with a single well-defined satellite at the middle of its postero-lateral margin, and a vestige of another anterior to it; the Ind inter-digital is obtusely oval and the Brd inverted pyriform, and the size sequence (area) is approx. $1=4>2=3$,

The metatarsal pads are remarkably elaborated. The inner pad takes the form of a shallow crescent- or boomerang-shaped structure, concave outwards and with an overall length of $19 \mathrm{~mm}_{\text {. }}$ and average width of about 2 mm . expanding to 3.5 mm . at the club-shaped upper extremity. In the example figured (P]. 3, Fig. B) there is a well-marked antero-internal process reaching out into the centre of the sole towards a corrosponding process of the opposite pad-this feature, however, is absent or only very weakly indicated in the other eight examples exarnined. The outer metatarsal pad is of enozmons length and whon modivided may spus two-thirds of the interval between the heel and the 4 th intedigital; It m ms an almost straight line course parallel to The margin of the foot and has a maximum lagth of 28 mm . and average width if 2.5 mm . expauding th 4.5 mm . at the anterion extremity, It is constricted et several points in its length and in most examples splits up at these necks into a chan of from two to four separate clements with low gaps between. but entire and divided pads may necur on opposite feet of the same anmal. All pads are strongly striated aE right angles to their long axes, except the apicals, whel are concentrically engraved.

The tail is very long and Hexile, but gives no external evidence of prehensile functions; its length ranges in the Melville Island matraial from 108-128 p.e. but reaches 150 p.c. of the head and body length in one example from Arnhem Land; it tapers gently and uniformly to the small horny spur whicts foms its apex. The scrotum in the captive male is conspicuous and well distended to accommodate enlarged testes in November, hut the condition was not checked satisfactorily in wild caught examples. The mammace are abdomuoinguinal only; $0-2=4$, in a subadult female of the typical race they were large: the pusterior about 5 mm . from the base of the genital tubercle and the anterinr 11 num. from the posterion.

EXTERNAL DIMENSIONS

Some external dimensions of nine examples are summarized in the table below. Number 4 was measured in the flesh shortly after death; number 5 is a filled skin, and the rost are alcohol prescrved.

PELAGE
The type on which Hayman (1936) based his description of the pelage of M. hirsutus melvillensis was an animal kept in captivity in London. Although in good agreement with the material now examined, it has been thought well to supplement it in some particulars by the following observations rade upon field skins of amimals killed in the wild as well as on the Garden Point specimen kept in captivity here.

Coat comparatively harsh and thin; mid-dorsally there are three series. (1) An underfur of 14 mm . not slaty nor plumbeaus as is usual, but very dark grey or blackish (about Ridgway's fuscous black) and not, or very obscurely, annulated. (2) Stouter hairs of 23 mm . concolorous with the underfor in the basal half, which is followed by a 5 mm . band of warm buff, and the extreme tip, black. (3) All black guard hairs to 42 mm . The general colour of the dersum is a coarse grizzle of black and buff, paler on the nape and forequarters, but rapidly darkening to almost black on the mid-dorsum and rump, through a great increase in the number and length of the guards. A small area on the nape and prescapular area is more ríhly coloured than the rest, the subterminal band here being an orange buff, near Ridgway's ochcaceous tawny.

The ventrum is shorter furred, and with the hasal colour paler than on the dorsum, but still drab rather than plumbeous (about hair brown). The underfur of 10 mm , is overlain by a second series reaching 18 mm . with a terminal band of pale buff, and lightly sprinkled with all black hairs. The basal drab shows through strongly and the general effect is of a dull buffy grizzled grey which occupies all the ventrum and extends on to the anterior
lateral siuface as well. Except for the darker scrotum, the whole ventrum is very uniform. There is a narow nude area in advance of the genital tuherele and the narrow posterior extremities of the scrotum are alsa nude and with the epidermis nearly black.

Crown of head, cheeks and neck grizaled like the lower foreback. Lips, thinal and mysticial area and a cing roand the eyes jet black and the muzzle also much darkened though finely grizzled. Ears densely furred jet black on the whole external surface and on the interior margins, and strongly contatsted with the crown. Outes aspeet of forelimb darkes than the adjacent lateral surface and becoming increasingly so distally until earpus, metacarpus and digits of manus are jet black, with no lighter markings. Hind limb also darker externally than the adjacent budy surface and becoming glossy jet black on tarsus, metatarsus and digits with a similar absence of variegation. The tail strongly haured on all surfaces, largely obscuring the scales which are S per em. proximally and 6 per cm . mid-dorsally, where the hairs are 5 scales long. It is jet black on all surfaces except for a variable apical portion which becomes abruptly greyish white and lengthens progressively on all surfaces to a terminal pencil of 40 mm , ca.

The Garden Point specimen, after three months eaptivity in Adelaide, was Foinid to be in a different moult phase from the above, the three components of the much shorter coat averaging mid-dorsally 9,16 and 27 mm . respectively, The coat was glossy and even hut on the posterior back showed it hesvily grizaled replacement crat mingling with the fuscus underfur. The seoond series in the London lype, with a length of $35-40 \mathrm{~mm}$, is much longer than in any of the Jocal matcrial.

THE SKULL AND DENTITION

The cranial and dental chatacters of the species were briefly diaunosed by Thomas (1806, 1909) and dealt with in more detail by Ellerman (1941) and Thate (1951), sometimes with conflicting resulfs. The following notes at species level covering some additional points, are based on the skull of the Giarden Point specimen, together with that of a young wdult from Arnhem land at the same stage, and a mouch vornger mate sknll with unworn molars from the same area.

The skull is stout and densely ossified. The general form in dorsal aspect is narrow, with the maximum zycomatic breadth less than half the greatest length ($0 \cdot 14-0 \cdot 48$), zygomatic arch with the maximum width cither median or posterior in adults and the combined outline a narrow oval somewhat Hatlencd at the sides and in the young skull slightly concave; the anterior root of the zyemma, thongh massive, has little laternl development dropping rapidly belos the dersal level. Rostrum heavy and broad, the nasals with little posterior Faper ind the least width at the nasofrontal suture ahont 28 p.e. of the length. Preorbital fossa medium in size, rather narrow from above and with the outer wall slanting inwards rather markedly. Anterior frontal region musually broad and inflated and infringing on the orbits so that the lacrymals, which are small and rugose, are deeply imbedded between the frontals oud the zygoma root and scarcely project into the orbit at all. Interorbital region strongly eoneave as noted by Llleman, a distinct depression extending to or beyond the coronal suture- Brain case much longer thati wide and with feebly developed temporal erests following the rather sharply angulated parieto-squamosal suture to the suprachbital ridges, which in the Melville Is. example especially, are sharp and
slightly overhanging. Interparietal as given by Collett (1897); ; lange, broad sharply angulated element.
in lateral aspect the most conspicuous feature is the sharp division of the dorsal profile into two distinct planes meeting in an angle of ca. 155°, the jumetion being slightly in advance of MP and marking the maximum depth of the skull. The anterior margin of the aygomatic plate has a convex but somewhat sloping shoulder without spine and its lower course is variably pitched and may be the seat of racial difference (infta). Tle tympanie anntulus is large, and hats prominent thickened margins and the lingulate process of the squanosal overlying the petrous temporal and mastoid is developed to remarkable strength and is a conspicuous whject above and behind the meatus.

The anterior palatal foramina are varjable as to breadth, overall shapo, posiLion of septal suture and posterior extension-in the lafter particular they fall short of the molar rows by half the length of M^{2} in the Melville Island skull and almist reach them in the immatere Arnhem Land specimon. Two mirute (? nasopatatime) foramina are constantly developed in the premaxillae, anterior to the incisive canals and within 2 mm , of the alveolar border; they are evidently homolugus with those which in Leporilius walesee to form a single medtan aperture at the same site. The palate has been doscribed in contradictory terms by Ellerman and Tate; in the present material, at its narrowest point between the first molars, I find that its breadth compared with that of M^{\prime} varies trom 1-7 in the heavy toothed Arnhem Laud skulls to $2 \cdot 1$ in that of Melville Island: so measured, the palate is cortainly not narow therefore and might be described as broad in redation to the majority of Australian speciess the median spure on its postcrior margin may be strongly developed or almost supptessed. The pterygoid plates are alsu very strongly developed and torminate thotly without hamular processes. The bullae fall short of the molar rows in length, and in so large a skull, are relatively smadl. A very eonspicuous featme in the palatal aspect of the skull is the great width of the mesopterygoid fessa half as great ugain as that of the ectopterygold.

The mandible is massive, has a stradght inforior border and comparatively slight emargination of the posterior border above the angle; the coromid is distinctly doveloped though much rexluced, its relative size about as in Mensteconys fuscus and Leporiltus jozess. Within the Zyzomyid geoup of genera, the relative development of the coronoid appears to follow the sequence Zyzamys> Lamiss > Mesembitionys > Conilurts:

The upper incisors are very Targe teeth with a variable angle; the Melville Istand example being loss opisthodent than those from Arohem Land; in the tomer also the incisors are notched almost as in Mus muscevlus. In the ouchars the cingulom of M^{2} is lage and prominent anterionly, but tho aceessory cuspoles. two or more of which are usually claimed for the dentition, are eithes aloent ot very smatl and imperfect and conld not justly be compared with the Leggadiou condition. The buceal eusps vary from skull to skull and sometimes on the two sides of the same skull; T. 3 of \mathbf{M}^{1} although small is generally quite distinct and sopasite, but TB and T.9 are almost ithsorbed by the median cusp, In M^{2} an interesting feature in one of the mainland skulls is a very distinct though mimute T. 3 as in Apodomus and Acomys of the Palitearetics it is also Feebly indicuted in the Melville Island individual. In the latter also (on one side only) a supplementary cusplet is crowded in between T. 1 und T. 4 giving the appearance of a duplication of the former, In M^{3} the postero-internal cosp T. 7 is well developed in the two Arnhem Land skulls (which therefore have the fill antero-posterior complement of nine lingual cusps), but is absent in
the Melville Island example. The cusp formula of the upper molars, using the Miller notation is:-
$\mathrm{M} \mathrm{M}\left\{\begin{array}{l}\mathrm{T} .1: \mathrm{T} . \mathrm{S}: \mathrm{T} .3 \\ \mathrm{~T} .4: \mathrm{T} .5: \mathrm{T} .6 \\ \mathrm{~T} .7: \mathrm{T}, 8:(\mathrm{T}, 9)^{1}\end{array}\right.$
$M^{2}\left\{\begin{array}{l}\mathrm{T}, 1: \mathrm{X}: \mathrm{X} \text { or }(\mathrm{T}, 3) \\ \mathrm{T}, 4: \mathrm{T}, \mathrm{T}: \mathrm{T}, 6 \\ \mathrm{~T}, \mathrm{~T}: \mathrm{T} .8:(\mathrm{T}, 9)\end{array}\right.$
$\mathrm{M}^{\mathrm{N}}\left\{\begin{array}{l}\mathrm{T} . \mathrm{I}: \mathrm{X}: \mathrm{X} \\ \mathrm{T} .4: \mathrm{T}: \mathrm{T} .6 \\ \mathrm{X} \text { or } \mathrm{T} .7: \mathrm{T}, \mathrm{B}=\mathrm{X}\end{array}\right.$
i() = greatly reduced.

In the lower molars the posterior median supplementary cusp is strongly developed in M_{1} and M_{2} and feebly indicated also on $\mathrm{Mar}_{\text {a }}$ In the Melville Island specimen an anterior supplementary cusp also appears on the first lamina if M_{1} in a median site between the (wo main elements - again as in Apodemis.
folinson (1952) has recorded the occumence of supernmmary upper chcek teeth in this specics.

The following figures give in turn some skull dimensions of the young adult male from Garden Point, Melville Istand, a young adult male at the same grow th stage from the Northern Territory mainland, and a much younger male From the same area. Greatest length, $62 \cdot 8,63 \cdot 0,58 \cdot 0$ basal length, $56 \cdot 7,57 \cdot 4$, 50.7. zygomatic breadth. 30-2, 28.8, 26.0; interorbital breadth, $10 \cdot 2,10 \cdot 5,9 \cdot 3$; nasals length, $26 \cdot 3,25 \cdot 1,92 \cdot 2$ nasals greatest breadth, $7 \cdot 3,7 \cdot 0,6 \cdot 7$; palatal lengti, $37 \cdot 0,37 \cdot 0,33 \cdot 4$; anterior palatal foramina, length, $11 \cdot 6,11-9,11 \cdot 8$; dilto, breadth, $4 \cdot 2,3 \cdot 4,4 \cdot 0$; bulla length, $9 \cdot 1,8 \cdot 8,8 \cdot 9, \mathrm{Ms}^{1-3}, 11 \cdot 1,11 \cdot 3,11 \cdot 6$.

SKELETAL CHARACTERS

The disarticulated skeleton of the Garden Point specimen gives the following data, Vertebrae; cervical 7; thoracic 13; lumbar 7 ; sacral 2; caudal 35 . Possibly the element here reckoned as the first caudal would be fused to the true sacrals in later life, but there would not be four sacrals as is frequent in rattus. The mesosterum has 5 segments. Scapula, max; length, $36 \cdot 5$; ditlo, max hreadth, $17 \cdot 5$; clavicle, longth, $18 \cdot 3$; humerus, length, 430 ; ditto, distal breadth, $10 \cdot 5$; radius, length, $38 \cdot 7$; ditto, max. distal breadth, $4 \cdot 9$; ulna, lengih, 47.8; ulna, max breadth (coronoid), 5.5; femur, length, $56 \cdot 5$; ditto, distal (inter erm(ylar), breadth, $11 \cdot 8$, tibia, length, $65 \cdot 4$, ditto, proximal breadth (medial aspect), $11 \cdot 0$; meximum, combined tibio-fibular breadth, $12 \cdot 5$; fibula, greatest proximal breadth, $7 \cdot 2$; ifio-ischial length of 1 pelvic ramus, 59.4 ; ilium breadth ditto, $11 \cdot 0$; ischial breadth, ditto, $18 \cdot 5$.

SUBSPECIFIC DIFFERENTIATION

Two snbspecies have been distinguished from the primary form of Arnhem Land, by reference to differences in such characters as general pelage colour, markings of the manus and pes pes length, extent of white on the tail, and the relative development of the zygomatic plate in the skull, ete. Although the species is represented by considerable stries in more than one European Mriseum, no detaled analysis of characters has so far been attempted, and until His is done and the normal range of variation in a homopatric group is determined, the real status of tho described forms must remain to some extent uncertain. The material lere scviewed is not sufficient to explore this field adequately, but the following eomments may contribute to a partial darification.

1. Mesembriomys hirsuins hirsutus Gould, 1842.

Three specimens only have been available and none is accurately localized; thore is contributary evidence, however, that all three are almost certainly from Arnhem Land or the Daly River drainage of the Northem Territory.

Published dimensions might be taken to indicate that this form is larger than M.F. meloillensis and with a relatively longer tail, but this may be due in part at least to the lack of aged males of the latter for comparisun. The data available, however, is too heterogeneous and scanty to permit of reliable deducsions on this head at present.

The body form and limbs in the three examined here are somewhat seunter than in the Mclville 1sland examples, the manus in particular being thick and heavy and with shorter clatys and interdigital pads and there is a tendency fins lingler counts in the digital ridges, one subadult carrying 11 on D3 of the manus and 14 an D4 of the pes. The two complete tails are relatively longer than in the other examples - 136 to 150 pe. of the head and body lenuth is compared with a range of $108-125$ p.c. in similarly immature melvillensis, but proviously published figures do nut indicate any significant difference in the foil length of adults.

The pelage in all three is Tess harsh and more profuse than in the islant form and the general colour much paler especially on the outcr aspect of the limbs. The ventral fur is creamy white to base without trace of darker tieking The dorsom of the pes (Pl. 3, Fig. D) is strikingly varicgated with blotehes of cream and black in all three specimens and this is apparently almest invariably the casc as there seems to be no spuafic record to the contrary in the literitsure of the 50 -odd examples which have boen noted. Could's plate, hovever (1857), which is presumably drawn from the scoond specimen from Port Essington (since the type skin lacked feet) appears to have the dorsom of the feet all black. The dorsum of the manas also carries markings though less conspienous and genemally conkined to a cream on bulf area along the onter maryin of the metacarpus and some white fringing bristles at the apical pads of the digits.
2. Mesembriomys hirsums melvillensis Kayman, 1938.

This appears to me to be a well-found athd even strongly differentiated insular race. Its distuctins lie chicfly in pelage characters, and Nayman bused his excellent description on four examples, three of which were living at the time in the Zoological Gurdens, London; the five additional speomens from Metville fsland here examined are in good aceord with his findings and well cantrasted with bath the above primary fom from the Northern Territory mainland and that of Cape York Peninsula. It is a somewhat slimmer aminal that M.F. hirsutus and with a mather harsher coat and a distinctly atrate colour schome, which affects the head and external aspect of the limbs differentially so that they are thrown snto contrase with the lighter sides and foreback. The cars are more densely furred externally and are nniformly jot black, as are also the dorsal surfaces of manns and pes, the characteristic markings of the animal from the adjacent mandand being quite suppressed. The ventral surface is quite different in appearance from that of the latter, boing dark grey at the base and hulfy grey extemally and with a distinct admixture of all black hafrs su that the gencral culmur is a rather dark grizzled drab like the sides and totally different from the all-cream ventrum of the primary race

Dimensions given by Hivman for the type, which is a male at about the same developmental stage us $\mathrm{N}(\mathrm{o}, 4$ of the table (suprat), agrees as to head and body and tail, but his pes length is lover (63 of. 71): Tates remeasurement of the type, however, corrects this to 68. "The heal material gives widely different values for pes length in the adult 3 and $f(71$ ef. 62), which is not formshadowed in the other two groups, and is probably an individual rather than a sexnat peculiarity. The car measurement of 44 for the type is higher than in
any if the four taken here from the tragal nutch (44 c.f. 38 max.), but the method of measurement may be different.

Comparison of the dimensions of the three skulls here examined with those already puhlished, suggests that there we few, if any, valid differences between the Melville Island and Arnhem Land forms. Considerahly ligher valucs have heen recorded for the latter, but this is very likely duc to age differences as no aged melvillensis skull has yet been examined. It is possible that the molar rows may be shorter in the latter ($11 \cdot 1-11 \cdot 1$ e.f. $11 \cdot 3-12$) and individual molars a little narrower: Tute's clatm of a difference in the bulla doses not stand. In non-metrical points, Hayman's opmion that there is a difference in the slope of the free margin of the zygonatic plate, seems to be confirmed and it should also be mentioned that the arching of the profile is mude steeper in the Garden Point skull than in the two Arnhem Land examples. In both these litter also, the parieto-squamosal suture shows an abrupt angle of re-ontrance into the squamosal, near the posterior root of the zygoma, which is much less developed in the island example. Several other minor differences sure noted (supra). but it is unlikely that these have a geographieal busis.

I am at a loss to understund Tate's statement that "the type differs Jittle fiom other races" - the general level of distinction of meloillensis. from hirsutus is distinctly higher than that generally accepted as justifying a trinomial in Muridae and appears to be maninamed with satisfactory constancy in the nine specimens now examined. Moreover, the factor of complete gengraphical isoletion and the considerable differential gradient attained across so small a water gap as Clarence Strait, are, as Muyman suggested, additional reasms for stocepting it as a valid form.

The status of the Bathurst Island representative, seprarated by the still narrower Apsley Strail, nemains to be delemmed.
3. Alesembriomys hirsutas rafloides Thumats, 1924.

Thomas founded this name on thee specmens from Cape Vork Peninsula of Qneensland, which were more or less intermediate between M.h. hirsurus unt M.h. meloillensis in ventral polage, heing grey at base and greyish white wather than cream externally. IIe atso comsidered that the foot wats Jonger in Oneensland than in Arnhem Land. Tate (1951) on re-eximining the tope. described the ventral fur is light grey basally and yellowish externally, which considerably reduces the distinction in this feature. He also fond marked differences in pelage due to monlt phase in additional specimens taken at the Pascuce River and Port Stewart in 1988, hot confirmed the longer pes. It is to be noted in the latter connection, however, that the rame in M.h. melvillensts reacles the maximum for ratfoides (71 mm .). Hayman (1936) states that beth all black and varlegated fect occur in the three ratioides in the British Mrseum, but Tate does not discoss this leature in his four additional examples. Hiss skull measurements suggest that the anterior palatal foramiua average longer in rottoides than in hirsutus.

A single specimen, an adult of in alcobol, collected by W. P. Doold in 1914 on the Stewart River of the Pacific Coast of Cape York Peninsula Queensland, has been examined for external and pelage characters only. The general coloration is nearer M.h. hirsutus than M.7. melvillensis, thingh the ventual pelage is intermediate and possibly somewhat nuarer the latter. The ears in this specimen ste nearly mude, the dorsum of manus and pes quite black, and the foont length low (64 mm). No skull of ruttoides has becn examined liene and there is no comment by Tate on his new muterial apart from dimensions; these might indicate that it has the largest skull of the three forms.

With this degree of overlapping it is impossible at present to assess the stmding of rattoides, though elearly it is much less distinet from typical hirsuius than from melvillensis. There is a probability that in recent times at least the Anstew Land and Queensland populations have been isolated; the characteristit northern Eucalyptus savannah woodland, which seems to be the chief habitat of the mainland forms is interrupted by a zone of treeless Mitchell grass downs towards the southem shore of the Golf of Carpentaria:

ADAPITVE MODIFICATIONS

It is remarkable that the arboreal adaptations of Mesembriomys, particnlarly in the pes, have found scant mention in the definition of the genus, but lave been ousted and overlain by traditionul and guite erroncous views of its terrestial saltatory or Jerboa-like modifieations.

On emergence from the early omnibus "genus" Mus, the two specios of Mesembriomys were lumped with many others which are now eonsidered very diverse, in the almost equally ommibus but prely Anstralian genus, Hapaloris of Ijchtenstein, in which enlarged hind limbs, modified feet, lengthened ears and long and tufted tail were considered to indicate adaptive apalogy the the Jerboas of the Old World. Analysis of this complex of species, chiefly by oldfield Thomas, had by 1909 split Lichtenstein's Hapalotis into the two groups of cumently ueeepted genera, Zyzomys, Tamys, Conilurus sensu stricto, and Mesembriomys on the one hand and Leporillus and Notomus on the other. The saltatory element in the original complex is now seen to be isolated in Notomys alone, but recognition of this fact was long delayed and as late as 1914 the species of Mescinbriomys are still described in Brehm's Tierleben as "Australischen springratten" with "namentlich abor verlangerten hinter bienen".

The first references of Gould and Gray contained no mention of the liahits of the animal and Gilhert, who furwarded the tope to London, if he had intormation on this head, evidently did not transmit it. In 1871 Gerrard Krefft in Sydncy, who appears to have had very sound views on the fiold ralatims of many Australian mammals, published a list of Australian rats with a hroad classificatum tuto four categories, based on what was known locally of their habits. In this scheme he divided Hapalotis into two sections, "The Tree Rats representing the Sqnimels in Austrilia" and the "Jerhora Rats". His allocation of some of tho species to the first group wonld not mect with acceptance now, but Mesembriomys hirsutus was eorrectly placed there is "The Great Hapalutis ur Tree Rat of Nouth Australia", Krefft, I believe, never worked personally in the habitats of the species, but evidently had acees to information on it, derived from Strange or Macgillivray or other early collectors in the Narth. In 1897, Knit Dahl published an excellent first-hand account of both species of Mesetnbrioneys in which the tree haunting habits of hirsulus and its ability as a climber were well documented for the first time. These two contributions on the natural history of the anmal, as noted above, made no impact on the classifications which were worked out in london, which followed severely thenefical lines, and it was not till 1951 that the arhoreal character of the genus was plainly stated by Tate.

The significance of the moderately enlarged lind limb (in contradistinction to elongation and narrowing of the pes) which is found more or less developed in must of the six genera named above, is evidently tow adaptive in the natow and immediate sonse, since it occurs alike in arboseal, cursorial, truly saltatory and rock-haunting forms of Anstralian murids and in monodelphia, in groups as different in habits as Leporidae and Sciuridac. Gray early recognised this pecultanty of the larger membors of "Hapalotis" and coined the not altogether
inappropriate name of "Rabbit Rats" for them, though it has beon suggested that the ear form also had its influence in this. In the evolution of the generic concept of Mesembriomys it plays a diminishing part and the above statement in Brehm's Tierleben may be contristed with that of Thomas in 1909, "form nummel"-or of Longman, 1916-"legs not markedly unequal". Justification for the latter may be obtained by expressing the length of the humerus phs uhna-radius as a percentage of that of femur plus tibia, thus obtaining an approsimate intermembral index which gives an estimate of the relative development of the fore and hind limb, sans manus and pes. In Mesembriomys hirsutus this is 75 , Leporillus jonesi 73 , Rattus lutreola $78, R$, ratus alexandrinus 79 . Oryctolagus cuniculus 77, atid Lepus curapacus 85.

The pes was thought by Thomas (1909) to be long and narrows a mistake comected by Elleman in 1941 and again by Tate ir 1951. Its length in relation to that of lead and body (max. 25 p.e.) is certainly high when compared with most Australian Rattus species, but is closely approached in this by several nom-saltatory foms such as Gyomys apodemoides 95 p.e., Leporillus conditor and apicalis 24 p.e., and Lamys pedunculattes and Ratfus greyi 22 p.c., and falis much below its value in saltatory Nolomys, which in the five species mossured ranges from $32-35$ p.e. The ballmark of the saltatory pos, moreover, is in the low breadth/length ratio, which in the ubove Notomys spp. has the Fange $9-12$ (11) p.e. as against the remarkably high value of $24-30$ (26) p.e in Mesembriomys hirsutus vars. Mctrical support of terrestrial saltatory specialtzation is theretore lacking. Tate claimed as "scansorial" modifications, chiefty the width of the metatarsal segment of the foot and tho large size and strong cucvature of the claws. In view of what is now well extablished as to the habits and habitats of the unimal, this wide term may give place to one of nasmower connutation, and most of the features of the pes listed below may be regarded as evidence of arboreal itdaptation, analogous to those found in other groups of treectimbers, and including verv likely, the modificd type of asboreal "saltation" from branch to brauch, frequent in such forms.

1. The relatively great Length of the hallux and of D5 and their more anterior position on the pes. The former of these two conditions was recognised by Ellerman and the latter is also valid. Whether these features are to be regarded us specializations de novo, or yather as a retention of primitive conditions may he debafed, but they ontainly run counter to the trend in most Australian terrestrial genera, which (especially in subdesert ateas) show a progressive reduction in the size of the lateral digits with a markedly posterim position on the pes, culminating in the extreme condition of Notomys, which is inescupably specialized.

The disposition of Ds, 1 and 5 on the pes of M. hirsutus is similar to that nin some arboneal specics of the Austro-Pacific genera Cefromys and Unicomys, but whether it is accompanied in life by an increase in the range of lateral movernents of these digits, there is no evidence to show.
2. Hixh tatue of the breadth/length ratio of the foot. This trend in a general way is parallel to the above, the nearest analognes amongst Australian forms being species of Melomys and Utamys, with Notomys again providing the opposite extreme. Laomt/s pedinculatus and some Rathus spp. (e.: lutreola), which are not usually suspected of arboreal habits, offer purtial exceptions and have very high B/L values; Lurumls, however, may be seansorial in the sense of ruck cimbing.
3. Tncreased stze, strength and careatare of the netils of the digits. This is a strongly marked feature shown also in the manus, and equalled by few, if any. Australian species,
4. Incraase in the number, ared, and effectiveness of the plantar structures involved in frictional conlact. This is the most obvious, if not the most significant, modification of the member, It is shown in the rubber-like consistence and panctation of the general plantar surface; in the prominence and multiplication of the digital ridges and their striation; in the height and sharp sculpturing of the interdigital pads; and particularly in the enormous development of the metatarsal pads, which (especially in the onter of the two) is probably umique in Australian muridae and recalls the condition of some of the arboreal Dasyuridae.

The tail, as mentioned (supra), gives no evidence of prehonsile powers, but it may be recalled that the long terminally tufted tail in general is by no means exclusive to terrestrial saltators like the Jerboas, but is strongly developed in such lypical arboreal animals as the Tree Shrews (Tupaia) and Tarsius:

In some particulars the modifications listed above may fall short of what is foond in some Austro-Pacific moridae and are certanly much inferior to those of the perfected arboreal forms of the Oriental region, such as Haeromys and Chiromysous. Nevertheless, they probably entitle Mesembriomys hirsutus (in spite of the Jerboa myth) to rank at least equally with the tree-living species of Uromys and Melomys, as an Anstralian arboreal product.

REFERENCIS

Collett, R., 1897. Proc. Zool. Soc. London (1897) - p. 322;
Dafil, K., 1897. The 7oologist, No. 671, pp. 195-196.
Elleraman, J. R., 1941. "Families and Cenera of Laviag Radents", Lomdon, 2, pp, 28-84.
Chax, J. E., 1841 (in Grey, C.). "Journal of Two Expeditious of Discovery in North-west and Western Anstralia", London, Pp 4()4-413.
Gnay, J. E., 1843. "List of Specimens of Manmals in the British Museum", London, p. 116.
Gotile, I, 1842. Froc. Zool. Soc. London, X, p. 12.
Goumd, I., 1851. Ihid., XIX, p. 127.
Could, J., 1857. "Mammals of Australia", III, P1. and Text.
Havman, H. W., 1936. Ann. Mag. Nat. Hist., 10, XVII, j1. 363.
Heck, L. 1914. In Brehm's Tierleben, 2, p. 380.
Inedale, T., and Thughhton, E. le C., 1931. "Cheellist of Mammals Recorded from Australia", Sychey, p. 81.
Johnson, D. H., 1959 . Jour. Mamm., 38, 1, p. 70.
Kherft, (9., 1871. "Mammals of Anstralia", text and plate on rats (ummmbered).
I.oncman, H. A., 1916. "Notes on the Classification of Conmon Rodents", Melberme, pe, 10, 16, figs. 5 and 6.
Ocildy, J., 1892. "Catalogue of Australian Mammats", Sydney, p. 117.
Thte, G. H. H, 1951. Bull. Am. Mus, Nat. Hist, 97, 4, p. 268.
Tate, G. H. H., 1952. Ihid., 98, T, yp, 572-573.
T'Homas, O., 1904. Novit, Fool., XI, p. 222.
Thomas, O., 19EG. Am, Mag. Nat Hist, 7, NVIl, p. 84.
Thomas, O., 1909 . Mbich., 8, III, p. 372.
Tпомлs, O., 1924, lhid., 9, XVII, p. 296.
Troughion, E. Le G., 1935, Rec. Anst. Musenm, XIX, 4, wat. 259-262, plate XIX.

EXPLANATION OF PLATES

PLATE 1
Fig. A. Dorsal aspect of the skull of a yenney adylt i of Mesembriomys hirsutus melvillensis from Gurden Point, Melville Island, Northern Territory of Australia (x 1.1).
Fig. B, Lateral aspect of the same $(x] \cdot I)$.

[^1]Fig. C. Palatal aspect of the same (x $1 \cdot 1$).
Fig. D. Buccal aspect of the mandible of a young adult $\hat{\delta}$ of Mesembriomys hirsutus hirsutus from the mainland of the Northern Territory of Australia ($\times 1 \cdot 3$).
Fig. E. Ditto. in an adult $\hat{\delta}$ of Rattus norvegicus Erxl. for comparison witl Fig. D (x 1-6).
Fig. F. Occlusal aspect of slightly worn right upper molars of the above example of Mesembriomys hirsutus melvillensis (x5.0).
Fig. G. Ditto, in the above example of Mesembriomys hirsutus hirsutus showing the full complement of 9 lingual cusps and T3 on M2 (x5•0).
Fig. H. Ditto. in an adult \hat{o} of Apodemus sylvaticus Linn. for comparison with Fig. G (x 14.0).

PLATE 2
The above example of Mesembriomys hirsutus melvillensis in captivity in Adelaide (x 0.30 ca .).
PLATE 3
Fig. A. Ditto (x 0.27 ca).
Fig. B. Plantar aspect of right pes of the same ($x 1 \cdot 0$ ca.).
Fig. C. Palmar aspect of right manus of same ($x 1.9 \mathrm{ca}$.).
Fig. D. Dorsal aspect of right pes of the above example of Mesembriomys hirsutus hirsutus (x 1.5 ca.).

- penputitionesi

[^0]: 1 The specific name lirsutus was consistently used for the spocies through all the changes in its generic designatim from Mius hirautus of Gould 1842, Hirough Hapalotis, Conilurus, Anmomys to Mesembriomys, and in the definition of its thre subspocies. In recent years it has been superseded by puuldit of Cray 1843 on the gromends at its preoccupation by Mus hirsutus of Elliset 1Sizel. The anminal so nemed by Elliot is now known as Golurdu elliuti Gray 1837 (fige Ellewman) and belongs to an Oriental gents whose species eamot possibly be wonfused with thuse of the Australian Mentembriomps. In view of these fices sind of its mamhigmons mese for 90 years in all the formative contributions to the knowledge of the animal, there would scem to be a strong case for the conservation of Refsitus in Josemhriomis. This would make possible the coulisued use of gouldit in Notompls, as is done at late at 1951 by Tate.

[^1]: ${ }^{1}$ The lenver pofile of the bulla figured is modified by a malfomation; normally it is less flattened than as shown.

